At You https://orcid.org/0000-0002-8231-063X [email protected], Xinwu Cao https://orcid.org/0000-0002-2355-3498 [email protected], Zhen Yan https://orcid.org/0000-0002-5385-9586 [email protected], Jean Marie Hameury https://orcid.org/0000-0002-6412-0103, Bozena Czerny https://orcid.org/0000-0001-5848-4333, Yue Wu https://orcid.org/0000-0002-5225-637X, Tianyu Xia https://orcid.org/0000-0002-8438-8529, Marek Tit https://orcid.org/0000-0003-1667-7334, Shuang-Nan Zhang https://orcid.org/0000-0001-5586-1017, Pu Ofand Piotr T. Zycki https://orcid.org/0000-0002-7596-4221Authors Info & Affiliations
Science
31 Aug 2023
Vol 381, Issue 6661
pp. 961–964
Editor’s summary
As material falls toward a black hole, it forms an accretion disk that emits x-rays and optical light and sometimes also a jet that is visible at radio wavelengths. Theory predicts that if the disk contains a sufficiently strong magnetic field, then it can resist the gravitational pull of the black hole and temporarily halt the accretion process. You et al. compared observations of a transient black hole accretion event at x-ray, optical, and radio wavelengths. They found time delays between brightening at the different wavelengths and used models to show that this behavior is produced by a magnetically arrested disk. —Keith T. Smith
Abstract
Accretion of material onto a black hole drags any magnetic fields present inwards, increasing their strength. Theory predicts that sufficiently strong magnetic fields can halt the accretion flow, producing a magnetically arrested disk (MAD). We analyzed archival multiwavelength observations of an outburst from the black hole x-ray binary MAXI J1820+070 in 2018. The radio and optical fluxes were delayed compared with the x-ray flux by about 8 and 17 days, respectively. We interpret this as evidence for the formation of a MAD. In this scenario, the magnetic field is amplified by an expanding corona, forming a MAD around the time of the radio peak. We propose that the optical delay is due to thermal viscous instability in the outer disk.
Get full access to this article
View all available purchase options and get full access to this article.
Supplementary Materials
This PDF file includes:
Materials and Methods
Supplementary Text
Figs. S1 to S8
References (41–97)
Other Supplementary Material for this manuscript includes the following:
MDAR Reproducibility Checklist
References and Notes
1
R. D. Blandford, R. L. Znajek, Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179433–456 (1977).
2
R. D. Blandford, D. G. Payne, Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 199883–903 (1982).
3
I. V. Igumenshchev, R. Narayan, M. A. Abramowicz, Three‐dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows. Astrophys. J. 5921042–1059 (2003).
4
R. Narayan, I. V. Igumenshchev, M. A. Abramowicz, Magnetically Arrested Disk: an Energetically Efficient Accretion Flow: Fig. 1. Publ. Astron. Soc. Jpn. 55L69–L72 (2003).
5
M. Zamaninasab, E. Clausen-Brown, T. Savolainen, A. Tchekhovskoy, Dynamically important magnetic fields near accreting supermassive black holes. Nature 510126–128 (2014).
6
Event Horizon Telescope Collaboration, First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett. 910L13 (2021).
7
Event Horizon Telescope Collaboration, First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophys. J. Lett. 930L16 (2022).
8
F. Yuan, H. Wang, H. Yang, The Accretion Flow in M87 is Really MAD. Astrophys. J. 924124 (2022).
9
S.-S. Weng, Z.-Y. Cai, S.-N. Zhang, W. Zhang, Y.-P. Chen, Y. Huang, L. Tao, Time-lag Between Disk and Corona Radiation Leads to Hysteresis Effect Observed in Black hole X-Ray Binary MAXI J1348-630. Astrophys. J. Lett. 915L15 (2021).
10
J.-P. Lasota, Physics of accretion flows around compact objects Nature 45449 (2001).
11
R. A. Remillard, J. E. McClintock, X-Ray Properties of Black-Hole Binaries. Year. Rev. Astron. Astrophys. 4449–92 (2006).
12
R. Fender, E. Gallo, An Overview of Jets and Outflows in Stellar Mass Black Holes. Space Sci. Rev. 183323–337 (2014).
13
R. Narayan, I. Yi, Advection-dominated accretion: A self-similar solution. Astrophys. J. 428L13 (1994).
14
D. M. Russell, D. Maitra, R. J. H. Dunn, S. Markoff, Evidence for a compact jet dominating the broad-band spectrum of the black hole accretor XTE J1550–564. Mon. Not. R. Astron. Soc. 4051759 (2010).
15
S. Corbel, M. Coriat, C. Brocksopp, A. K. Tzioumis, R. P. Fender, J. A. Tomsick, M. M. Buxton, C. D. Bailyn, The ‘universal’ radio/X-ray flux correlation: The case study of the black hole GX 339−4. Mon. Not. R. Astron. Soc. 4282500–2515 (2013).
16
MAP Torres, J. Casares, F. Jiménez-Ibarra, A. Álvarez-Hernández, T. Muñoz-Darias, MA Padilla, PG Jonker, M. Heida, The Binary Mass Ratio in the Black Hole Transient MAXI J1820+070. Astrophys. J. Lett. 893L37 (2020).
17
P. Atri, J. C. A. Miller-Jones, A. Bahramian, R. M. Plotkin, A. T. Deller, P. G. Jonker, T. J. Maccarone, G. R. Sivakoff, R. Soria, D. Altamirano, T. Belloni, R. Fender, E. Koerding, D. Maitra, S. Markoff, S. Migliari, D. Russell, T. Russell, C. L. Sarazin, A. J. Tetarenko, V. Tudose, A radio parallax to the black hole X-ray binary MAXI J1820+070. Mon. Not. R. Astron. Soc. 493L81–L86 (2020).
18
T. Kawamuro, H. Negoro, T. Yoneyama, S. Ueno, H. Tomida, M. Ishikawa, Y. Sugawara, N. Isobe, R. Shimomukai, T. Mihara, M. Sugizaki, S. Nakahira, W. Iwakiri, F. Yatabe, Y. Takao, M. Matsuoka, N. Kawai, S. Sugita, T. Yoshii, Y. Tachibana, S. Harita, K. Morita, A. Yoshida, T. Sakamoto, M. Serino, Y. Kawakubo, Y. Kitaoka, T. Hashimoto, H. Tsunemi, M. Nakajima, T. Kawase, A. Sakamaki, W. Maruyama, Y. Ueda, T. Hori, A. Tanimoto, S. Oda, T. Morita, S. Yamada, Y. Tsuboi, Y. Nakamura, R. Sasaki, H. Kawai, T. Sato, M. Yamauchi, C. Hanyu, K. Hidaka, K. Yamaoka, M. Shidatsu, MAXI/GSC detection of a probable new X-ray transient MAXI J1820+070. The Astronomer’s Telegram 201811399 (2018).
19
B. You, Y. Tuo, C. Li, W. Wang, S.-N. Zhang, S. Zhang, M. Ge, C. Luo, B. Liu, W. Yuan, Z. Dai, J. Liu , E. Qiao, C. Jin, Z. Liu, B. Czerny, Q. Wu, Q. Bu, C. Cai, X. Cao, Z. Chang, G. Chen, L. Chen, T. Chen, Y . Chen, Y. Chen, Y. Chen, W. Cui, W. Cui, J. Deng, Y. Dong, Y. Du, M. Fu, G. Gao, H. Gao, M. Gao, Y. Gu , J. Guan, C. Guo, D. Han, Y. Huang, J. Huo, S. Jia, L. Jiang, W. Jiang, J. Jin, Y. Jin, L. Kong, B. Li, C . Li, G. Li, M. Li, T. Li, W. Li, X. Li, X. Li, X. Li, Y. Li, Z. Li, X. Liang, J. Liao, C. Liu , G. Liu, H. Liu, X. Liu, Y. Liu, B. Lu, F. Lu, X. Lu, Q. Luo, T. Luo, X. Ma, B. Meng, Y. Nang, J . Nie, G. Ou, J. Qu, N. Sai, R. Shang, L. Song, X. Song, L. Sun, Y. Tan, L. Tao, C. Wang, G. Wang, J. Wang , L. Wang, W. Wang, Y. Wang, X. Wen, B. Wu, B. Wu, M. Wu, G. Xiao, S. Xiao, S. Xiong, Y. Xu, J. Yang, S . Yang, Y. Yang, Q. Yi, Q. Yin, Y. You, A. Zhang, C. Zhang, F. Zhang, H. Zhang, J. Zhang, T. Zhang, W. Zhang, W. Zhang , W. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, Z. Zhang, H. Zhao, X. Zhao, S. Zheng, D. Zhou, J. Zhou, Y . Zhu, Y. Zhu, Insight-HXMT observations of jet-like corona in a black hole X-ray binary MAXI J1820+070. Nat. Common. 121025 (2021).
20
X. Ma, L. Tao, S.-N. Zhang, L. Zhang, Q.-C. Bu, M.-Y. Ge, Y.-P. Chen, J.-L. Qu, S. Zhang , F.-J. Lu, L.-M. Song, Y.-J. Yang, F. Yuan, C. Cai, X.-L. Cao, Z. Chang, G. Chen, L. Chen, T .-X. Chen, Y.-B. Chen, Y. Chen, W. Cui, W.-W. Cui, J.-K. Deng, Y.-W. Dong, Y.-Y. .-X. Fu, G.-H. Gao, H. Gao, M. Gao, Y.-D. Gu, J. Guan, C.-C. Guo, D.-W. Han, Y. Huang, J. Huo, L. Ji, S.-M. Jia, L.-H. Jiang, W.-C. Jiang, J. Jin, Y.-J. Jin, L.-D. Kong, B. Li , C.-K. Li, G. Li, M.-S. Li, T.-P. Li, W. Li, X. Li, X.-B. Li, X.-F. Li, Y. -G. Li, Z.-W. Li, X.-H. Liang, J.-Y. Liao, B.-S. Liu, C.-Z. Liu, G.-Q. Liu, H.- W. Liu, X.-J. Liu, Y.-N. Liu, B. Lu, X.-F. Lu, Q. Luo, T. Luo, B. Meng, Y. Nang, J.-Y. Nie, G. Ou, N. Sai, R.-C. Shang, X.-Y. Song, L. Sun, Y. Tan, Y.-L. Tuo, C. Wang, G.-F. Wang, J. Wang, L.-J. Wang, W.-S. Wang, Y.-S. Wang, X.-Y. Wen, B.-Y. Wu, B.-B. Wu, M. Wu, G.-C. Xiao, S. Xiao, F.-G. Xie, S.-L. Xiong, H. Xu, Y.-P. Xu, J.-W. Yang, S. Yang, Y.- J. Yang, Q.-B. Yi, Q.-Q. Yin, Y. You, A.-M. Zhang, C.-M. Zhang, F. Zhang, H.-M. Zhang, J. Zhang , T. Zhang, W.-C. Zhang, W. Zhang, W.-Z. Zhang, Y. Zhang, Y.-F. Zhang, Y.-J. Zhang, Y. Zhang, Z. Zhang, Z . Zhang, Z.-L. Zhang, H.-S. Zhao, X.-F. Zhao, S.-J. Zheng, D.-K. Zhou, J.-F. Zhou, Y.-X. Zhu, Y. Zhu, R.-L. Zhuang, Discovery of oscillations above 200 keV in a black hole X-ray binary with Insight-HXMT. Nat. Astron. 594–102 (2021).
21
D. J. K. Buisson, A. C. Fabian, D. Barret, F. Fürst, P. Gandhi, J. A. García, E. Kara, K. K. Madsen, J. M. Miller, M. L. Parker, A. W. Shaw, J. A. Tomsick, D. J. Walton, MAXI J1820+070 with NuSTAR I. An increase in variability frequency but a stable reflection spectrum: Coronal properties and implications for the inner disc in black hole binaries. Mon. Not. R. Astron. Soc. 4901350–1362 (2019).
22
E. Kara, J. F. Steiner, A. C. Fabian, E. M. Cackett, P. Uttley, R. A. Remillard, K. C. Gendreau, Z. Arzoumanian, D. Altamirano, S. Eikenberry, T. Enoto, J. Homan, J. Neilsen, A. L. Stevens, The corona contracts in a black-hole transient. Nature 565198–201 (2019).
23
S.-N. Zhang, TP Li, FJ Lu, LM Song, YP Xu, CZ Liu, Y. Chen, XL Cao, QC Bu, Z. Chang, G. Chen, L. Chen, TX Chen, YB Chen, YP Chen, W. Cui, WW Cui, JK Deng, YW Dong, YY Du, MX Fu, GH Gao, H. Gao, M. Gao, MY Ge, YD Gu, J. Guan, C. Gungor, CC Guo, DW Han, W. Hu, Y. Huang, J. Huo, SM Jia, LH Jiang, WC Jiang, J. Jin, YJ Jin, B. Li, CK Li, G. Li, MS Li, W. Li, X . Li, XB Li, XF Li, YG Li, ZJ Li, ZW Li, XH Liang, JY Liao, GQ Liu, HW Liu, SZ Liu, XJ Liu, Y. Liu, YN Liu, B. Lu, XF Lu, T. Luo, X. Ma, B. Meng, Y. Nang, JY Nie, G. Ou, JL Qu, N. Sai, RC Shang, GH Shen, L. Sun, Y. Tan, L. Tao, YL Tuo , C. Wang, CQ Wang, GF Wang, HY Wang, J. Wang, WS Wang, YS Wang, XY Wen, BY Wu, BB Wu, M. Wu, GC Xiao, SL Xiong, LL Yan, JW Yang, S . Yang, YJ Yang, QB Yi, B. Yuan, AM Zhang, CL Zhang, CM Zhang, F. Zhang, HM Zhang, J. Zhang, Q. Zhang, SY Zhang, S. Zhang, T. Zhang, WC Zhang , W. Zhang, W. Z. Zhang, Y. Zhang, Y. F. Zhang, Y. J. Zhang, Y. Zhang, Z. Zhang, Z. Zhang, Z. L. Zhang, H. S. Zhao, X. F. Zhao, S. J. Zheng, J. F. Zhou, Y. X. Zhu, Y. Zhu, R. L. Zhuang, Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite. Sci. China Phys. Mech. Astron. 63249502 (2020).
24
C. Littlefield, Fast optical flaring in the suspected black-hole binary MAXI J1820+070 (ASASSN-18ey). The Astronomer’s Telegram 201811421 (2018).
25
J. Patterson, S. Brincat, G. Stone, J. Hambsch, M. Richmond, J. Kemp, B. Monard, D. Lemay, S. Dvorak, J. Ulowetz, T. Vanmunster, T. Tordai, G. Myers, T. Campbell, J. Rock, I. Miller, D. Slauson, D. Cejudo, P. Lewin, G. Roberts, M. Epstein-Martin, M. Smith, 17-Hour Period in V light from MAXI J1820+070=ASASSN-18ey. The Astronomer’s Telegram 201811756 (2018).
26
J. S. Bright, R. P. Fender, S. E. Motta, D. R. A. Williams, J. Moldon, R. M. Plotkin, J. C. A. Miller-Jones, I. Heywood, E. Tremou, R. Beswick, G. R. Sivakoff, S. Corbel, D. A. H. Buckley, J. Homan, E. Gallo, A. J. Tetarenko, T. D. Russell, D. A. Green, D. Titterington, P. A. Woudt, R. P. Armstrong, P. J. Groot, A. Horesh, A. J. Horst, E. G. Körding, V. A. McBride, A. Rowlinson, R. A. M. J. Wijers, An extremely powerful long-lived superluminal ejection from the black hole MAXI J1820+070. Nat. Astron. 4697–703 (2020).
27
J. Mikołajewska, AA Zdziarski, J. Ziolkowski, MAP Torres, J. Casares, The Donor of the Black Hole X-Ray Binary MAXI J1820+070. Astrophys. J. 9309 (2022).
28
Materials and methods are available as supplementary materials.
29
F. Yuan, R. Narayan, Hot Accretion Flows Around Black Holes. Year. Rev. Astron. Astrophys. 52529–588 (2014).
30
B. F. Liu, E. Qiao, Accretion around black holes: The geometry and spectra. iScience 25103544 (2021).
31
R. Narayan, A. Sądowski, R. F. Penna, A. K. Kulkarni, GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: role of outflows. Mon. Not. R. Astron. Soc. 4263241 (2012).
32
M. C. Begelman, N. Scepi, J. Dexter, What really makes an accretion disc MAD. Mon. Not. R. Astron. Soc. 5112040–2051 (2022).
33
X. Cao, The large-scale magnetic fields of advection-dominated accretion flows. Astrophys. J. 73794 (2011).
34
J.-M. Hameury, K. Menou, G. Dubus, J.-P. Lasota, J.-M. Hure, Accretion disc outbursts: A new version of an old model. Mon. Not. R. Astron. Soc. 2981048–1060 (1998).
35
J. M. Miller, J. Raymond, A. Fabian, D. Steeghs, J. Homan, C. Reynolds, M. van der Klis, R. Wijnands, The magnetic nature of disk accretion onto black holes. Nature 441953–955 (2006).
36
B. You, O. Straub, B. Czerny, M. Sobolewska, A. Różańska, M. Bursa, M. Dovčiak, Testing wind as an explanation for the spin problem in the continuum-fitting method. Astrophys. J. 821104 (2016).
37
J. Sánchez-Sierras, T. Muñoz-Darias, Near-infrared emission lines trace the state-independent accretion disc wind of the black hole transient MAXI J1820+070. Astron. Astrophys. 640L3 (2020).
38
B. E. Tetarenko, J. P. Lasota, C. O. Heinke, G. Dubus, G. R. Sivakoff, Strong disk winds traced throughout outbursts in black-hole X-ray binaries. Nature 55469–72 (2018).
39
G. Dubus, C. Done, B. E. Tetarenko, J.-M. Hameury, The impact of thermal winds on the outburst lightcurves of black hole X-ray binaries. Astron. Astrophys. 632A40 (2019).
41
K. A. Arnaud, in Astronomical Data Analysis Software and Systems Vvol. 101 of Astronomical Society of the Pacific Conference SeriesG. H. Jacoby, J. Barnes, Eds. (Astronomical Society of the Pacific, 1996), p. 17.
42
Z. Frei, J. E. Gunn, Generating colors and K corrections from existing catalog data. Astron. J. 1081476 (1994).
43
J. B. Oke, Absolute Spectral Energy Distributions for White Dwarfs. Astrophys. J. Suppl. Ser. 2721 (1974).
44
S. Kaspi, P. S. Smith, H. Netzer, D. Maoz, B. T. Jannuzi, U. Giveon, Reverberation Measurements for 17 Quasars and the Size‐Mass‐Luminosity Relations in Active Galactic Nuclei. Astrophys. J. 533631–649 (2000).
45
M. C. Bentz, J. L. Walsh, A. J. Barth, N. Baliber, V. N. Bennert, G. Canalizo, A. V. Filippenko, M. Ganeshalingam, E. L. Gates, J. E. Greene, M. G. Hidas, K. D. Hiner, N. Lee, W. Li, M. A. Malkan, T. Minezaki, Y. Sakata, F. J. D. Serduke, J. M. Silverman, T. N. Steele, D. Stern, R. A. Street, C. E. Thornton, T. Treu, X. Wang, J.-H. Woo, Y. Yoshii, The lick agn monitoring project: broad-line region radii and black hole masses from reverberation mapping of hβ. Astrophys. J. 705199–217 (2009).
46
P. Du, C. Hu, K.-X. Lu, F. Wang, J. Qiu, Y.-R. Li, J.-M. Bai, S. Kaspi, H. Netzer, J.-M. Wang, Supermassive black holes with high accretion rates in active galactic nuclei. I. First results from a new reverberation mapping campaign. Astrophys. J. 78245 (2014).
47
A. R. King, H. Ritter, The light curves of soft X-ray transients. Mon. Not. R. Astron. Soc. 293L42–L48 (1998).
48
R. D. Blandford, M. C. Begelman, On the fate of gas accreting at a low rate on to a black hole. Mon. Not. R. Astron. Soc. 303L1–L5 (1999).
49
F.-G. Xie, A. A. Zdziarski, Radiative Properties of Magnetically Arrested Disks. Astrophys. J. 887167 (2019).
50
X. Cao, An accretion disk-outflow model for hysteretic state transition in x-ray binaries. Astrophys. J. 81771 (2016).
51
N. I. Shakura, R. A. Sunyaev, Black holes in binary systems. Observational appearance. Astron. Astrophys. 50033 (1973).
52
G. S. Bisnovatyi-Kogan, A. A. Ruzmaikin, The accretion of matter by a collapsing star in the presence of a magnetic field. Astrophys. Space Sci. 2845–59 (1974).
53
AA van Ballegooijen, in Accretion Disks and Magnetic Fields in Astrophysicsvol. 156 of Astrophysics and Space Science LibraryG. Belvedere, Ed. (Springer, 1989), p. 99.
54
S. H. Lubow, J. C. B. Papaloizou, J. E. Pringle, On the stability of magnetic wind-driven accretion discs. Mon. Not. R. Astron. Soc. 2681010–1014 (1994).
55
X. Cao, A. A. Zdziarski, Jets in the soft state in Cyg X-3 caused by advection of the donor magnetic field and unification with low-mass X-ray binaries. Mon. Not. R. Astron. Soc. 492223–231 (2020).
56
J. F. Donati, J. D. Landstreet, Magnetic Fields of Nondegenerate Stars. Year. Rev. Astron. Astrophys. 47333–370 (2009).
57
X. Cao, D. Lai, Jet production in black hole X-ray binaries and active galactic nuclei: mass feeding and advection of magnetic fields. Mon. Not. R. Astron. Soc. 4851916–1923(2019).
58
C. A. Tout, J. E. Pringle, Can a disc dynamo generate large-scale magnetic fields?Mon. Not. R. Astron. Soc. 281219–225 (1996).
59
K. Beckwith, J. F. Hawley, J. H. Krolik, Transport of large-scale poloidal flux in black hole accretion. Astrophys. J. 707428–445 (2009).
60
M. Liska, A. Tchekhovskoy, E. Quataert, Large-scale poloidal magnetic field dynamo leads to powerful jets in GRMHD simulations of black hole accretion with toroidal field. Mon. Not. R. Astron. Soc. 4943656–3662 (2020).
61
X. Cao, B. You, Z. Yan, Magnetic accretion disk-outflow model for the state transition in X-ray binaries. Astron. Astrophys. 654A81 (2021).
62
A. R. King, J. E. Pringle, M. Livio, Accretion disc viscosity: How big is alpha?Mon. Not. R. Astron. Soc. 3761740–1746 (2007).
63
A Parker, Cosmical Magnetic Fields. Their Origin and Their Activity (Clarendon Press, 1979).
64
S. Fromang, J. M. Stone, Turbulent resistivity driven by the magnetorotational instability. Astron. Astrophys. 50719–28 (2009).
65
X. Guan, C. F. Gammie, The turbulent magnetic prandtl number of mhd turbulence in disks. Astrophys. J. 6971901–1906 (2009).
66
G. Lesur, P. Y. Longaretti, Turbulent resistivity evaluation in magnetorotational instability generated turbulence. Astron. Astrophys. 504309–320 (2009).
67
I. V. Igumenshchev, R. Narayan, Three‐dimensional Magnetohydrodynamic Simulations of Spherical Accretion. Astrophys. J. 566137–147 (2002).
68
T. Kawamura, M. Axelsson, C. Done, T. Takahashi, A full spectral-timing model to map the accretion flow in black hole binaries: The low/hard state of MAXI J1820+070. Mon. Not. R. Astron. Soc. 511536–552 (2022).
69
R. Narayan, A. Chael, K. Chatterjee, A. Ricarte, B. Curd, Jets in magnetically arrested hot accretion flows: Geometry, power, and black hole spin-down. Mon. Not. R. Astron. Soc. 5113795–3813 (2022).
70
B. E. Tetarenko, A. W. Shaw, E. R. Manrow, P. A. Charles, J. M. Miller, T. D. Russell, A. J. Tetarenko, Using optical spectroscopy to map the geometry and structure of the irradiated accretion discs in low-mass X-ray binaries: the pilot study of MAXI J0637–430. Mon. Not. R. Astron. Soc. 5013406–3420(2021).
71
A. A. Zdziarski, A. J. Tetarenko, M. Sikora, Jet Parameters in the Black Hole X-Ray Binary MAXI J1820+070. Astrophys. J. 925189 (2022).
72
H. Falcke, P. L. Biermann, Galactic jet sources and the AGN connection. Astron. Astrophys. 308321 (1996).
73
M. Coriat, S. Corbel, M. M. Buxton, C. D. Bailyn, J. A. Tomsick, E. Körding, E. Kalemci, The infrared/X-ray correlation of GX 339−4: probing hard X-ray emission in accreting black holes. Mon. Not. R. Astron. Soc. 400123 (2009).
74
M. Livio, G. I. Ogilvie, J. E. Pringle, Extracting Energy from Black Holes: The Relative Importance of the Blandford‐Znajek Mechanism. Astrophys. J. 512100–104 (1999).
75
J. Smak, Accretion in cataclysmic binaries. IV – Accretion disks in dwarf novae. Acta Astron. 34161 (1984).
76
S. Hirose, O. Blaes, J. H. Krolik, M. S. B. Coleman, T. Sano, Convec tion causes enhanced magnetic turbulence in accretion disks in outburst. Astrophys. J. 7871 (2014).
77
G. Dubus, J. M. Hameury, J. P. Lasota, The disc instability model for X-ray transients: Evidence for truncation and irradiation. Astron. Astrophys. 373251–271 (2001).
78
K. Menou, J.-M. Hameury, J.-P. Lasota, R. Narayan, Disc instability models for X-ray transients: Evidence for evaporation and low -viscosity?Mon. Not. R. Astron. Soc. 314498–510 (2000).
79
J. E. Owen, A. P. Jackson, Planetary evaporation by UV and X-ray radiation: Basic hydrodynamics. Mon. Not. R. Astron. Soc. 4252931–2947 (2012).
80
S. S. Kimura, M. Kunitomo, S. Z. Takahashi, From birth to death of protoplanetary discs: Modelling their formation, evolution and dispersal. Mon. Not. R. Astron. Soc. 4612257–2265 (2016).
81
C. Knigge, The effective temperature distribution of steady-state, mass-losing accretion discs. Mon. Not. R. Astron. Soc. 309409–420 (1999).
82
Z. Zhu, J. M. Stone, Global Evolution of an Accretion Disk with a Net Vertical Field: Coronal Accretion, Flux Transport, and Disk Winds. Astrophys. J. 85734 (2018).
83
J. Li, X. Cao, The Large-scale Magnetic Field of a Thin Accretion Disk with Outflows. Astrophys. J. 872149 (2019).
84
Y. Zhu, D.-F. Bu, X.-H. Yang, F. Yuan, W.-B. Lin, Large-scale dynamics of winds driven by line force from a thin accretion disc. Mon. Not. R. Astron. Soc. 5131141–1153 (2022).
85
LD Kong, S. Zhang, YP Chen, SN Zhang, L. Ji, PJ Wang, L. Tao, MY Ge, CZ Liu, LM Song, FJ Lu, JL Qu, TP Li, YP Xu, XL Cao, Y. Chen, QC Bu, C. Cai, Z. Chang, G. Chen, L. Chen, TX Chen, WW Cui, YY Du, GH Gao, H. Gao, M. Gao, YD Gu, J. Guan, CC Guo , DW Han, Y. Huang, J. Huo, SM Jia, WC Jiang, J. Jin, B. Li, CK Li, G. Li, W. Li, X. Li, XB Li, XF Li, ZW Li, XH Liang, JY Liao, BS Liu, HW Liu, HX Liu, XJ Liu, XF Lu, Q. Luo, T. Luo, RC Ma, X. Ma, B. Meng, Y. Nang, JY Nie, G. Ou , XQ Ren, N. Sai, XY Song, L. Sun, Y. Tan, YL Tuo, C. Wang, LJ Wang, WS Wang, YS Wang, XY Wen, BB Wu, BY Wu, M. Wu, GC Xiao , S. Xiao, SL Xiong, RJ Yang, S. Yang, YJ Yang, YJ Yang, QB Yi, QQ Yin, Y. You, F. Zhang, HM Zhang, J. Zhang, P. Zhang, WC Zhang, W . Zhang, YF Zhang, YH Zhang, HS Zhao, XF Zhao, SJ Zheng, YG Zheng, DK Zhou, Insight-HXMT Observations of a Possible Fast Transition from the Jet- to Wind-dominated State during a Huge Flare of GRS 1915+ 105. Astrophys. J. Lett. 906L2 (2021).
86
Castro Segura N, Knigge C, Long KS, Altamirano D, Armas Padilla M, Bailyn C, Buckley DAH, Buisson DJK, Casares J, Charles P, Combi JA, Cuneo VA, Degenaar ND. Del Palacio, M. Diaz Trigo, R. Fender, P. Gandhi, M. Georganti, C. Gutierrez, JV Hernandez Santisteban, F. Jimenez-Ibarra, J. Matthews, M. Mendez, M. Middleton, T. Munoz- Darias, M. Özbey Arabacı, M. Pahari, L. Rhodes, TD Russell, S. Scaringi, J. van den Eijnden, G. Vasilopoulos, FM Vincentelli, P. Wiseman, A persistent ultraviolet outflow from an accreting neutron star binary transient . . . . Nature 60352–57 (2022).
87
J. A. Orosz, R. A. Remillard, C. D. Bailyn, J. E. McClintock, An Optical Precursor to the Recent X-Ray Outburst of the Black Hole Binary GRO J1655–40. Astrophys. J. Lett. 478L83 (1997).
88
J. M. Hameury, J. P. Lasota, J. E. McClintock, R. Narayan, Advection‐dominated Flows around Black Holes and the X‐Ray Delay in the Outburst of GRO J1655−40. Astrophys. J. 489234–243 (1997).
89
E. Gallo, N. Degenaar, J. van den Eijnden, Hard state neutron star and black hole X-ray binaries in the radio:X-ray luminosity plane. Mon. Not. R. Astron. Soc. 478L132–L136 (2018).
90
J. Wang, G. Mastroserio, E. Kara, J. A. García, A. Ingram, R. Connors, M. van der Klis, T. Dauser, J. F. Steiner, D. J. K. Buisson, J. Homan, M. Lucchini, A. C. Fabian, J. Bright, R. Fender, E. M. Cackett, R. A. Remillard, Disk, Corona, Jet Connection in the Intermediate State of MAXI J1820+070 Revealed by NICER Spectral-timing Analysis. Astrophys. J. Lett. 910L3 (2021).
91
A. W. Shaw, R. M. Plotkin, J. C. A. Miller-Jones, J. Homan, E. Gallo, D. M. Russell, J. A. Tomsick, P. Kaaret, S. Corbel, M. Espinasse, J. Bright, Observations of the Disk/Jet Coupling of MAXI J1820+070 during Its Descent to Quiescence. Astrophys. J. 90734 (2021).
92
B. C. Kelly, Some Aspects of Measurement Error in Linear Regression of Astronomical Data. Astrophys. J. 6651489–1506 (2007).
93
D. M. Russell, R. P. Fender, R. I. Hynes, C. Brocksopp, J. Homan, P. G. Jonker, M. M. Buxton, Global optical/infrared–X-ray correlations in X-ray binaries: Quantifying disc and jet contributions. Mon. Not. R. Astron. Soc. 3711334–1350 (2006).
94
J. A. Paice, P. Gandhi, T. Shahbaz, P. Uttley, Z. Arzoumanian, P. A. Charles, V. S. Dhillon, K. C. Gendreau, S. P. Littlefair, J. Malzac, S. Markoff, T. R. Marsh, R. Misra, D. M. Russell, A. Veledina, A black hole X-ray binary at ∼100 Hz: Multiwavelength timing of MAXI J1820+070 with HiPERCAM and NICER. Mon. Not. R. Astron. Soc. 490L62–L66 (2019).
95
R. D. Blandford, A. Königl, Relativistic jets as compact radio sources. Astrophys. J. 23234 (1979).
96
S. S. Kimura, T. Sudoh, K. Kashiyama, N. Kawanaka, Magnetically Arrested Disks in Quiescent Black Hole Binaries: Formation Scenario, Observable Signatures, and Potential PeVatrons. Astrophys. J. 91531 (2021).
97
A. A. Zdziarski, M. Sikora, P. Pjanka, A. Tchekhovskoy, Core shifts, magnetic fields and magnetization of extragalactic jets. Mon. Not. R. Astron. Soc. 451927–935 (2015).
Information & Authors
Information
Published In
Science
Volume 381 | Issue 6661
1 September 2023
Copyright
Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Article versions
Submission history
Received: 5 February 2022
Accepted: 30 June 2023
Published in print: 1 September 2023
Permissions
Request permissions for this article.
Acknowledgments
We thank W.-F. Yu, J.-F. Wu, F.-G. Xie, W.-M. Gu, and M.-Y. Sun for useful discussions. B.Y. thanks Y.-K. Zhang (Jinan University) for help in producing movie S1. We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide, which we used in this research.
Funding: B.Y. is supported by the National Program on Key Research and Development Project 2021YFA0718500, the National Science Foundation of China (NSFC) grants 12273026 and U1931203, the Natural Science Foundation of Hubei Province of China 2022CFB167, the Fundamental Research Funds for the Central Universities 2042022rc0002, and the Xiaomi Foundation/Xiaomi Young Talents Program. X.C. is supported by the NSFC grants 11833007, 12073023, 12233007, and 12147103; the China Manned Space Project science research grant CMS-CSST- 2021-A06; and the fundamental research fund for Chinese central universities. Z.Y. is supported by NSFC grants U1838203 and U1938114, the Youth Innovation Promotion Association of CAS ID 2020265, and the funds for key programs of Shanghai astronomical observatory. S.-N.Z. is supported by the National Program on Key Research and Development Project grant 2016YFA0400802 and by the International Partnership Program of Chinese Academy of Sciences (grant 113111KYSB20190020). P.D. is supported by NSFC grants 12022301 and 11991051.
Author contributions: B.Y. initiated the project, performed the data analysis and model interpretation, and led the writing of the manuscript. X.C. led the interpretation of the MAD and the writing of the related text. Z.Y. contributed to the data analysis, model discussion, and the writing of the text. J.-M.H. provided the DIM code and contributed to the model discussion and to the writing of the text. B.C. contributed to the discussion of the DIM. Y.W. and T.X. contributed to the simulation of the DIM and the data analysis. M.S., S.-N.Z., P.D., and P.Z. contributed to the model discussion and the writing of the text.
Competing interests: The authors declare no competing interests.
Data and materials availability: The Insight-HXMT data used in this work are available from http://archive.hxmt.cn/ under Obs ID P0114661. The radio luminosities were taken from previous work[SourceDatafile([SourceDatafile(26)], then corrected to our adopted distance (18). The optical data were obtained from https://www.aavso.org/data-download; we used object “MAXI J1820+070,” start date “03/01/2018,” and end date “03/01/2019.” The reduced data (including LE, ME, and HE light curves and x-ray, radio, and V-band luminosities), our scripts for the ICCF analysis and figure plotting, and the numerical codes we used to compute the magnetic field strength and DIM are all available at https://github.com/Bei-You-BH/MAD and archived at Zenodo (40).
Authors
Affiliations
Department of Astronomy, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
Roles: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, and Writing – review & editing.
Institute for Astronomy, School of Physics, Zhejiang University, Hangzhou 310058, China.
Roles: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, and Writing – review & editing.
Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China.
Roles: Conceptualization, Formal analysis, Funding acquisition, Investigation, Validation, Visualization, Writing – original draft, and Writing – review & editing.
Strasbourg Astronomical Observatory, University of Strasbourg and National Center for Scientific Research, Unite Mixte de Recherche 7550, 67000 Strasbourg, France.
Roles: Conceptualization, Formal analysis, Methodology, Software, and Writing – review & editing.
Center for Theoretical Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland.
Roles: Conceptualization, Methodology, and Writing – review & editing.
Department of Astronomy, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China.
Key laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry o f Education, Nanjing 210023, China.
Roles: Data curation, Investigation, Methodology, Software, Validation, Visualization, Writing – original draft, and Writing – review & editing.
Department of Astronomy, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
Key laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei 230026, China.
School of Astronomy and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
Roles: Software, Validation, and Visualization.
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716 Warsaw, Poland.
Roles: Conceptualization, Investigation, Methodology, and Writing – original draft.
Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
Roles: Investigation, Project administration, Supervision, Validation, and Writing – review & editing.
Pu Of
Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
Roles: Software, Writing – original draft, and Writing – review & editing.
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716 Warsaw, Poland.
Roles: Conceptualization and Writing – original draft.
Funding Information
National Program on Key Research and Development Project: 2021YFA0718500
Xiaomi Foundation / Xiaomi Young Talents Program
Youth Innovation Promotion Association of CAS: 2020265
Key programs of Shanghai astronomical observatory
Fundamental Research Funds for the Central Universities (Zhejiang University)
China Manned Space Project: CMS-CSST-2021-A06
International Partnership Program of Chinese Academy of Sciences: 113111KYSB20190020
National Program on Key Research and Development Project: 2016YFA0400802
Notes
Metrics & Citations
Metrics
Article Usage
Altmetrics
Citations
Cite as
Observations of a black hole x-ray binary indicate formation of a magnetically arrested disk.Science381,961-964(2023).DOI:10.1126/science.abo4504
Export citation
Select the format you want to export the citation of this publication.
View Options
Check Access
Media
Figures
Multimedia
Tables